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Sparse Alignment for Robust Tensor
Learning

Zhihui Lai, Wai Keung Wong, Yong Xu, Member, IEEE, Cairong Zhao, and Mingming Sun

Abstract— Multilinear/tensor extensions of manifold learning
based algorithms have been widely used in computer vision and
pattern recognition. This paper first provides a systematic analy-
sis of the multilinear extensions for the most popular methods by
using alignment techniques, thereby obtaining a general tensor
alignment framework. From this framework, it is easy to show
that the manifold learning based tensor learning methods are
intrinsically different from the alignment techniques. Based on
the alignment framework, a robust tensor learning method called
sparse tensor alignment (STA) is then proposed for unsupervised
tensor feature extraction. Different from the existing tensor
learning methods, L1- and L2-norms are introduced to enhance
the robustness in the alignment step of the STA. The advantage
of the proposed technique is that the difficulty in selecting the
size of the local neighborhood can be avoided in the manifold
learning based tensor feature extraction algorithms. Although
STA is an unsupervised learning method, the sparsity encodes
the discriminative information in the alignment step and provides
the robustness of STA. Extensive experiments on the well-known
image databases as well as action and hand gesture databases
by encoding object images as tensors demonstrate that the
proposed STA algorithm gives the most competitive performance
when compared with the tensor-based unsupervised learning
methods.

Index Terms— Feature extraction, local alignment, manifold
learning, sparse representation, tensor learning.
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I. INTRODUCTION

IN RECENT years, high-order tensor learning methods
have been widely used in the fields of computer vision,

pattern recognition, and machine learning to deal with the
curse of dimensionality problem. The classical dimension-
ality reduction method principal component analysis (PCA)
[1] was first extended to second-order cases (i.e., 2-D PCA
(2-DPCA) [2] and generalized low-rank approximations of
matrices (GLRAM) [3]), and then to the high-order case,
(i.e., multilinear PCA (MPCA) [4] and its uncorrelated varia-
tion [5]). Similarly, linear discriminant analysis (LDA) [6] was
also extended to 2-D LDA (2-DLDA) [7], [8] and multilinear
discriminant analysis (MDA) [9]. By using the differential
scatter discriminant criterion (DSDC) [10], Tao et al. [11]
proposed the general tensor discriminant analysis (GTDA) for
gait recognition. With the maximum margin criterion (MMC)
[12], Laplacian bidirectional MMC (LBMMC) [13] and tensor
MMC (TMMC) [14] were proposed for object recognition.
The high-order tensor-based methods performed better than
the classical ones in feature extraction and classification.

However, the above methods only use the global structure
information of the dataset. Results from manifold learning
methods developed in the past decade show that the local
geometric structure is more important than the global structure
since the high-dimensional data lies on the low-dimensional
manifold. The representative manifold learning methods
include locally linear embedding (LLE) [15], ISOMAP [16],
Laplacian eigenmaps (LE) [17] and local tangent space align-
ment (LTSA) [18], and so on. All of these nonlinear manifold
learning methods suffer from the out-of-sample problem [19],
and one of the simplest but frequently used technique is to
learn the explicit linear mappings of the corresponding nonlin-
ear manifold learning methods. Therefore, locality preserving
projections (LPP) [20], the linearization of LE, neighborhood-
preserving embedding (NPE) [21] and orthogonal neighbor-
hood preserving projections (ONPP) [22], the linearization
of LEE, the linear LTSA (LLTSA) [23] and its supervised
variations [24], [25], the linearization of LTSA were proposed
for dimensionality reduction. Recently, Rozza et al. [26]
proposed the truncated isotropic PCA classifier (T-IPCAC) for
feature extraction and classifier design.

Since these linear dimensionality reduction methods cannot
deal with the high-order tensor data, some of these methods
were further extended to be multilinear cases, and many
tensor-based and manifold learning based methods were pro-
posed by using higher order tensor decomposition [27]–[29].

2162-237X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1780 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 10, OCTOBER 2014

Within the past 10 years, there has been great interest in high-
order tensor feature extraction, and the tensor-based methods
have been popular in computer vision and pattern recogni-
tion [30]–[33]. For example, He et al. [34] proposed tensor
subspace analysis (TSA) for second-order learning. Dai and
Yeung [35] proposed tensor LPP (TLPP), tensor NPE (TNPE),
and tensor LDE (TLDE). Yan et al. [36] proposed the marginal
Fisher analysis (MFA) and graph embedding framework for
dimensionality reduction from the viewpoint of graph con-
struction, in which some classical methods can be included.
Recently, Liu and Ruan [37] proposed orthogonal tensor NPE
(OTNPE) for facial expression recognition. By integrating the
manifold learning and the MDA methods, discriminant locally
linear embedding (DLLE) [38] and some variations such as
those in [39]–[42] were proposed for face recognition, gait
recognition, action recognition, etc. (For more details, see
the latest survey of multilinear subspace learning for tensor
data [43].) In addition, the tensor voting methods [44], [45]
also used the tensor representation to perform the dimensional-
ity estimation, manifold learning, and function approximation.

However, until now, a systematic analysis on the intrinsic
relationship among these tensor learning methods and design-
ing a robust method for tensor learning have not been done.
Therefore, this paper proposes to use the alignment techniques
to unify the tensor learning methods and design a robust
tensor alignment method which integrates L1- and L2-norms
for sparse alignment. The contributions of this paper are as
follows. First, this paper proposes a general framework for
tensor learning and a concrete method called sparse tensor
alignment (STA) for feature extraction. Second, it provides a
comprehensive analysis and comparison on some of the most
representative tensor learning methods and puts them into a
unified framework by using the tensor alignment techniques.
Therefore, this framework leads us to understand the common
properties and intrinsic differences in existing tensor learning
algorithms. Based on the unified framework summed up in
this paper, a novel tensor learning method using the L1- and
L2-norms penalty is proposed for robust tensor learning. Thus,
it is natural for the proposed STA to avoid the difficulty in
selecting the neighborhood size in the manifold learning based
tensor learning methods.

The rest of this paper is organized as follows. In Section II, a
systematic analysis on the tensor learning methods is provided.
In Section III, a robust tensor alignment method is presented
and used for tensor learning. Experiments are carried out to
evaluate the proposed tensor learning method in Section IV,
and conclusions are given in Section V.

II. TENSOR ALIGNMENT TECHNIQUES

In this section, some basic multilinear notations, definitions
and operations similar to those in [9] and [38] are briefly
reviewed at first and then the tensor alignment representation
of the most representative methods is presented. Thus a unified
tensor learning framework is obtained.

A. Multilinear Algebras

In this paper, lowercase and uppercase italic letters
(i.e. i, j, N , etc.) denote scalars, bold lowercase letter

(i.e., e, h, x etc.) denote vectors, bold uppercase letters (i.e.,
A, B, C, etc.) denote matrices, and the Lucida calligraphy
Italic letters, (i.e. X ,Y) denote the tensors.

It is assumed that the training samples are represented as
the nth order tensor {Xi ∈ Rm1×m2×···×mn , i = 1, 2, . . . , N},
where N denotes the total number of training samples.

Definition 1: The mode-k flattening of the nth-order tensor
X ∈ Rm1×m2×···×mn (i = 1, 2, . . . , N) into matrix X(k) ∈
Rmk×∏i �=k mi , i.e. X(k) ⇐k X , is defined as X(k)

ik , j = Xii ,i2,...,in ,
j = 1+∑n

l=1,l �=k (il − 1)
∏n

o=l+1,o �=k mo.
Definition 2: The mode-k product of tensor X with

matrix U ∈ Rm′k×mk is defined as Y = X ×k U, where
Yi1,...,ik−1,i,ik+1 ,...,in =

∑mk
j=1 Xi1,...,ik−1 , j,ik+1,...,in Ui, j ( j =

1, . . . , m′k).
The common properties of the tensor learning methods aim

to obtain a set of projection matrices {Ui ∈ Rmi×di , di ≤ mi ,
i = 1, 2, . . . , n} and map the original high-order tensor data
into a low-order tensor space, as

Yi = Xi ×1 U1 ×2 U2 · · · ×nUn. (1)

Different tensor learning methods use different strategies to
learn the projection matrices for feature extraction. With the
above preparations, some popular tensor learning methods
can be unified into a general framework which provides
the comprehensive understanding on different tensor feature
extraction methods.

B. Proposed Tensor Alignment Technique and its Models

Concerning the tensor learning methods, since the tensor Xi

is unfolded into a large size matrix X(k)
i for computing, we

only need to give the alignment method about the unfolded
matrix.

Let X̂(k)
i = [X(k)

i , X(k)
i1

, X(k)
i2

, . . . , X(k)
iK
] be the matrix con-

taining X(k)
i and its K unfolding nearest neighbors tensors.

The projection matrix Uk maps the unfolding tensor into a
low-dimensional subspace: Uk : X(k)

i → Y(k)
i . Let Li be the

local alignment matrix of size (K + 1) × (K + 1) designed
for different tensor learning algorithms, and then the local
alignment optimization problem is formed

min tr
(
Ŷ(k)

i (Li ⊗ Ik)Ŷ
(k)T
i

)
(2)

where ⊗ denotes the Kronecker product of matrices and
Ŷ(k)

i = [Y(k)
i , Y(k)

i1
, . . . , Y(k)

iK
] be the local coordinate. The

selection matrix Si with the size of N × (K + 1) is defined as

(Si )pq =
{

1, if p = fi {q}
0, otherwise

(3)

where fi = {i, i1, i2, . . . , iK } denotes the set of indices
for the i th alignment matrix formed by X(k)

i (or tensor
Xi ) and its K unfolding nearest neighbors tensors. Let
Y(k) = [Y(k)

1 , Y(k)
2 , . . . , Y(k)

N ] be the global coordinates; then
we have

Ŷ(k)
i = Y(k)(Si ⊗ Ik). (4)
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Then (2) can be rewritten as

min tr(Ŷ(k)
i (Li ⊗ Ik)Ŷ

(k)T
i )

= min tr(Y(k)(Si ⊗ Ik)(Li ⊗ Ik)(ST
i ⊗ Ik)Y(k)T )

= min tr(Yk
i (Si Li ST

i ⊗ Ik)Y
(k)T
i ). (5)

By summing up all the alignments together, the whole
alignment can be obtained as

min
∑

i
tr(Ŷ(k)

i (Si Li ST
i ⊗ Ik)Ŷ

(k)T
i )

= min tr
∑

i
Ŷ(k)

i (Si Li ST
i ⊗ Ik)Ŷ

(k)T
i

= min tr(Y(k)(L⊗ Ik)Y(k)T ) (6)

where L = ∑
i Si Li ST

i is the alignment matrix [18], which
can be obtained by the iterative procedure as

L(fi , fi )← L(fi , fi )+ Li (7)

with the initialization L = 0.
Let La and Lb be some kinds of alignment matrices by dif-

ferent methods. If the linear transformation Y(k)
i = UT

k X(k)
i is

considered, then the following optimization model is obtained:

(i)

{
min tr(Y(k)(L⊗Ik)Y(k)T)=min tr(UT

k X(k)(La⊗Ik)X(k)TUk)

s.t. UT
k X(k)(Lb ⊗ Ik)X(k)T Uk = Idk .

(8)

Or, if only one alignment matrix La is used and Y(k) is
uniquely determined, the constraint Y(k)Y(k)T = Idk can be
imposed and then the optimization model is obtained as

{
min tr(UT

k X(k)(La ⊗ Ik)X(k)T Uk)

s.t. UT
k X(k)X(k)T Uk = Idk .

(9)

Specifically, (9) is the special case of model (i) with Lb = IN .
In addition, one can alternatively impose the following

orthogonal constraint and obtain another model

(i i)

{
min tr(UT

k X(k)(La ⊗ Ik)X(k)T Uk)

s.t. UT
k Uk = Idk .

(10)

These two models can be solved by using the Lagrangian
multiplier method and their solutions can be obtained by
using generalized or standard eigenvalue decomposition,
respectively. Since there are not closed-form solutions for
tensor subspace learning methods, the iterative strategy is
usually used for computing the local optimal solutions. As
can be seen from the following sections, these two mod-
els are the basic forms of the tensor subspace learning
methods.

C. Alignment for MPCA and T-IPCAC

MPCA maximizes the trace of the total scatter matrix of the
unfolded tensors in the projected subspace. The basic model

of MPCA is

min tr(UT
i S(k)

t Ui )

= min tr(UT
k

∑

i
(X(k)

i − X̄(k))(X(k)
i − X̄(k))T Uk)

= min
N∑

i=1

tr

(
1

N2

N−1∑

j=1

(Y(k)
i − Y(k)

i j
)(Y(k)

i − Y(k)
i j

)T
)

= min
N∑

i=1

tr

(
1

N2

(

Ŷ(k)
i

((
N − 1
−eN−1

)

⊗ Ik

))

×
(

Ŷ(k)
i

((
N − 1
−eN−1

)

⊗ Ik

))T)

= min
N∑

i=1

tr

(
1

N2 Ŷ(k)
i

((
N − 1
−eN−1

)(
N − 1
−eN−1

)T

⊗ Ik

)

Ŷ(k)T
i

)

= min
N∑

i=1

tr(Ŷ(k)
i (LMPCA

i ⊗ Ik)Ŷ
(k)T
i ) (11)

where Y(k)
i j

( j = 1, 2, . . . , N − 1) are the rest unfolded

tensors of Y(k)
i , X̄(k) is the unfolded mean tensor, and

eN−1 = [1, 1, . . . , 1]T with N − 1 elements, Ŷ(k)
i =

[Y(k)
i , Y(k)

i1
, . . . , Y(k)

iK
] and K = N − 1

LMPCA
i =

(
N − 1
−eN−1

)(
N − 1
−eN−1

)T

⊗ Ik

and

LMPCA =
∑

i
LMPCA

i .

Therefore, MPCA can be viewed as a global tensor align-
ment method since Ŷ(k)

i contains all the unfolded tensors. And
model (ii) represents the optimization model of MPCA with
L =∑i LMPCA

i .
The key points of T-IPCAC [26] are the recovery of the

residuals and the Fisher subspace estimation. Since T-IPCAS
uses labeled data to estimate the Fisher subspace, it can also
be included in the MDA set. One of the key steps in T-IPCAC
is to compute the d eigenvectors corresponding to the d largest
eigenvalues of the sample covariance matrix St on the vector
space instead of higher order tensor space, where the definition
of St and its alignment are as follows:

St = 1

N

�

X
�

X
T =

N∑

i=1

�

X
(

1

N2 I
)

�

X =
N∑

i=1

�

XL
T−IPCAC

i

�

X

(12)

where
�

X = [x1, x2, . . . , xN ] denotes the vector-based sample
matrix, and LT−IPCAC

i = (1/N2)I, and I is the N × N identity
matrix. This indicates that the whitening step in T-IPCAC is
a global alignment with the identity matrix.

D. Alignment for TLPP

TLPP preserves the local neighborhood relationship of
the tensors. Similar to LPP, TLPP first constructs the local
neighborhood matrix Wi j = exp(−‖Xi − X j‖2/t) if X j is
one of the K nearest neighbors of Xi ; otherwise 0, and t



1782 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 10, OCTOBER 2014

is the tuning parameter. The objective function of TLPP is
defined as

min
∑

i

∑

j

∥
∥
∥(Y(k)

i − Y(k)
j )
∥
∥
∥

2
Wi j

= min
N∑

i=1

K∑

l=1

(Y(k)
i − Y(k)

l )(Y(k)
i − Y(k)

l )T W̄il

= min
N∑

i=1

tr

⎛

⎜
⎝

⎡

⎢
⎣

(Y(k)
i − Y(k)

i1
)T

...

(Y(k)
i − Y(k)

il
)T

⎤

⎥
⎦

× [Y(k)
i − Y(k)

i1
, . . . , Y(k)

i − Y(k)
il
]diag(W̄i,:)

⎞

⎟
⎠

= min
N∑

i=1

tr

(

Ŷ(k)
i

([−eT
K

IK

]

diag(W̄i,:)
[
−eT

K IK

]
⊗ Ik

)

Ŷ(k)T
i

)

= min
N∑

i=1

tr(Ŷ(k)
i (LTLPP

i ⊗ Ik)Ŷ
(k)T
i ) (13)

where LTLPP
i =

[−eT
K

IK

]

diag(W̄i,:)
[−eT

K IK
] ⊗ Ik , and IK

is the K × K identity matrix, Ŷk
i = [Yk

i , Yk
i1
, . . . , Yk

iK
],

eK = [1, 1, . . . , 1]T with K elements, and W̄il =
exp(−∥∥χi − χl

∥
∥2

/t) (i.e., matrix W̄ only contains nonzero
elements in W̄).

In addition, TLPP has the following constraint which can
also be represented by using the alignment technique:

tr

(∑

i
Y(k)

i Y(k)T
i Di j

)

=
N∑

i=1

tr

(

Yk
i (D⊗ Ik) Y(k)T

i

)

= 1 (14)

where the diagonal elements Dii of matrix D is defined as
Dii = ∑

j Wi j . Equation (14) can be viewed as the single

alignment with weight Dii since matrix Ŷ(k)
i = Y(k)

i only
contains one element (i.e., the unfolded tensor of UT

k X(k)
i ).

Therefore, both parts of TLPP can be represented by using
the alignment technique.

It should be noted that the tensor version of the graph
embedding framework proposed in [36] can also be repre-
sented and concluded in the tensor alignment framework with
the same way as TLPP. To avoid repetition, it is omitted in
this paper.

E. Alignment for TNPE

TNPE preserves the local linear reconstruction coefficients
of tensors in the low-dimensional subspace. Suppose the
coefficient matrix M (of size N × K ) is obtained in the
same way as in LLE, and M only contains the reconstruction
coefficients (zero elements are not included). The cost function

of TNPE is defined as

min
N∑

i=1

∥
∥
∥
∥
∥
∥

Y(k)
i −

K∑

j=1

Mi, j Y(k)
i j

∥
∥
∥
∥
∥
∥

2

= min
N∑

i=1

tr

(

Ŷ(k)
i

([−1
Mi,:

] [
−1 MT

i,:
]
⊗ Ik

)

Ŷ(k)T
i

)

= min
N∑

i=1

tr(Ŷ(k)
i (LTNPE

i ⊗ Ik)Ŷ
(k)T
i ) (15)

where Ŷ(k)
i = [Y(k)

i , Y(k)
i1

, . . . , Y(k)
iK
], i.e., Ŷ(k)

i only contains

the Y(k)
i and its K nearest neighbor tensor unfolded matrices.

It can be found that TNPE is different from MPCA. The
essential difference is in the alignment matrices. TLPP uses
the local alignment method to construct LTNPE

i .

F. Alignment for MDA

MDA aims to find the multilinear subspaces that can min-
imize the trace of the within-class unfolded tensor scatter
matrix S(k)

w and maximize the trace of the between-class
unfolded tensor scatter S(k)

b .
For the mode-k within-class tensor scatter matrix S(k)

w ,
we have

min tr(S(k)
w )

=
C∑

i=1

Ni∑

j=1

(Y j (k)
i − Ȳ(k)

i )(Y j (k)
i − Ȳ(k)

i )T

= min tr
N∑

i=1

1

N2

⎛

⎝
Ni−1∑

j=1

(Y(k)
i − Y(k)

i j
)

⎞

⎠

⎛

⎝
Ni−1∑

j=1

(Y(k)
i − Y(k)

i j
)

⎞

⎠

T

= min
N∑

i=1

tr

⎛

⎝
1

N2 Ŷ(k)
i

⎛

⎝
[

Ni − 1
−eNi−1

][ Ni − 1

−eN−1

]T

⊗ Ik

⎞

⎠ Ŷ(k)T
i

⎞

⎠

= min
N∑

i=1

tr

(
1

N2 Ŷ(k)
i

(
Lw

i ⊗ Ik
)

Ŷ(k)T
i

)

(16)

where Ȳ(k)
i denotes the mean value of the mode-k flattening

of the tensor samples in the i th class, C is the number of
classes, Ni is the number of the tensors in the i th class.Y j (k)

i
is the j th tensor in the i th class, eNi−1 = [1, 1, . . . , 1]T with
Ni − 1 elements and Ŷ(k)

i = [Y(k)
i , Y(k)

i1
, . . . , Y(k)

iNi−1
]

Lw
i =

[
Ni − 1
−eNi−1

] [
Ni − 1
−eN−1

]T

.

For the mode-k between-class tensor scatter matrix S(k)
b ,

we have

max tr(S(k)
b ) =

C∑

i=1

Ni (Ȳ
(k)
i − Ȳ(k))(Ȳ(k)

i − Ȳ(k))T

= max tr

⎛

⎝
C∑

i=1

Ni
1

C2

C−1∑

j=1

(Ȳ(k)
i − Ȳ(k)

i j
)

C−1∑

j=1

(Ȳ(k)
i − Ȳ(k)

i j
)T

⎞

⎠
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= max
C∑

i=1

tr

(
Ni

C2 Ŷ(k)
i

([
C − 1
−eC−1

] [
C − 1
−eC−1

]T

⊗ Ik

)

Ŷ(k)T
i

)

= max
C∑

i=1

tr

(
Ni

C2 Ŷ(k)
i

(
Lb

i ⊗ Ik

)
Ŷ(k)T

i

)

(17)

where Ȳ(k) denotes the mean value of the mode-k
flattening of the tensor samples of all the training samples.
Ȳ(k)

i j
( j = 1, . . . , C − 1) is the mean unfolded tensor of the

different classes form Ȳ(k)
i , and

Lb
i =

[
C − 1
−eC−1

] [
C − 1
−eC−1

]T

eC−1 = [1, 1, . . . , 1]T with C − 1 elements and
Ŷ(k)

i = [Ȳ(k)
i , Ȳ(k)

i1
, . . . , Ȳ(k)

iC−1
].

As can be seen from (16) and (17), S(k)
w is aligned by the

samples within each class, and S(k)
b is aligned by the unfolded

matrices of the sample mean tensor of different classes. The
objective function of MDA can be constructed by using the
model (i).

G. Alignment for Tensor Voting

Tensor voting (TV) was proposed in [45] for dimensionality
estimation, manifold learning, and function approximation.
The key operation in the voting process is to compute the
voting accumulator through the local neighboring points. This
step can be viewed as the local alignment with the eigenvectors
in a special form. For xi , the voting accumulator of its
neighborhood point x j can be expressed as

LTV
j ← LTV

j + (λ1 − λ2)Svote(xi , x j , ê1)+ λN Bvote(xi , x j )

+
N−1∑

d=2

(λd−λd−1)Vvote(xi , x j , T i
e,d ) (18)

where λks are the eigenvalues corresponding to the voter;
Svote(xi , x j , ê1) denote the stick vote from xi to x j with ê1
being the normal at xi ; Bvote(xi , x j ) denotes the ball vote from
xi to x j ; Vvote(xi , x j , T i

e,d ) denotes the vote from the generic
tensor, and T i

e,d denotes the elementary voting tensor with d
equal nonzero eigenvalues. The readers are referred to [45] for
more details.

Comparing (18) with (7), we can find that the tensor voting
method in [45] has a procedure similar to the tensor alignment
framework and thus it can be included in the proposed
framework.

H. Discussions on the Tensor Learning Models

It can be seen from above sections that the tensor learning
methods are different in terms of constructing the alignment
matrices L∗i and Ŷk

i . MPCA and MDA use the global align-
ment techniques, but TLPP and TNPE use local alignment
techniques. One of the limitations of MPCA and MDA is
that the alignment matrices cannot reflect the local geometric
structure of a tensor dataset. However, TNPE and TLPP use
the local geometric structure information in constructing the

alignment matrices and preserve it in the low-dimensional
subspace, therefore the manifold properties can be maintained.

For the supervised tensor methods based on LPP or NPE, the
only difference from TLPP or TNPE lies in the construction of
the local neighborhood graphs W or M using the label infor-
mation. Thus, the corresponding supervised tensor learning
methods, such as those in [38]–[42], have the same alignment
methods as in TLPP or TNPE. Therefore, this paper does not
discuss it in detail except for the representative example MDA.
Table I summarizes the details of the tensor learning methods
using the proposed tensor alignment framework.

Although the manifold learning based tensor learning meth-
ods usually outperform the globality-based methods such as
MPCA and MLDA, the neighborhood size K in the manifold
learning based tensor subspace learning methods is difficult to
decide in application. Moreover, since the tensor data usually
contains large quantities of information redundancy and noise,
designing a robust method for alignment becomes crucial but
has yet to be explored. In this paper, we introduce the recently
proposed sparse representation for robust alignment in the next
section.

III. SPARSE TENSOR ALIGNMENT

In this section, a new multilinear dimensionality reduction
technique called STA is developed as a special application of
the above tensor alignment framework.

A. Motivation of Sparse Tensor Alignment

Sparse representation has been widely used in signal
processing, image processing, feature extraction, and pattern
recognition. Wright et al. [46] proposed the use of sparse
representation for robust face recognition, Qiao et al. [47]
proposed sparsity-preserving projections (SPPs) for feature
extraction, and Cheng et al. [48] used the L1-graph for image
data clustering and subspace learning. As demonstrated in
[47] and [48], the graphs constructed by the L1-norm have
the advantages of greater robustness to data noise, automatic
sparsity and adaptive neighborhood for individual datum.
Another important advantage is that sparse representation
has the potential discriminative ability since most nonzero
elements are located on the samples in the same class as
the represented sample [46]–[48]. Thus, these advantages can
be naturally fused to tensor learning if the L1-norm is used
in the tensor representation in constructing the alignment
matrices. However, only using the L1-norm penalty such as
in LASSO [49] has its limitation as indicated in [50]: if there
is a group of variables among which the pairwise correlations
are very high, LASSO tends to select any one variable from the
group and does not consider which one is selected. Fortunately,
it is known that combining the L1- and L2-norm penalty can
result in grouping effectiveness in regression and thus enhance
the prediction accuracy by using the elastic net [50] which
overcomes the limitation of only using the L1-norm penalty.

In short, it is expected that the elastic net is used to group
a set of sparse coefficients to construct the sparse alignment
matrices, in which the sparse representation information or the
potential discriminative information is encoded to enhance the
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TABLE I

SUMMARY OF THE ALGORITHMS

discriminative ability in an unsupervised manner. Therefore, it
is reasonable to integrate these advantages to design a more
robust and effective tensor learning method. As a result, we
first introduce sparse representation and the SPP algorithm in
the next section, and then STA is proposed.

B. Sparse Representation and SPP

The goal of sparse representation is to represent the high-

dimensional vector x as few entries of
�

X = [x1, . . . , xN ] as
possible. This can be formally expressed as follows:

min
h
‖h‖0 s.t. x = �

Xh (19)

where h ∈ RN is the coefficient vector and ‖h‖0
is the L0-norm which is equal to the number of nonzero
components in h. Unfortunately, this problem is not convex,
and finding the sparse solution is NP-hard. It has been shown
that, if the solution of (19) is sparse enough, this difficulty can
be bypassed by convexizing the problem [51] and solving

min
h
‖h‖1 s.t. x = �

Xh. (20)

SPP takes the advantage of L1-norm sparse representation
and preserves such reconstructive weights for dimensionality
reduction. For each xi , SPP first solves the following L1-norm
minimization problem:

min ‖hi‖1 s.t. xi =
�

Xhi , 1 = eT hi (21)

where hi = [hi,1, . . . , hi,i−1, 0, hi,i+1 , . . . , hi,N ]T is an
N-dimensional vector in which the i th element is equal

to zero (implying that the xi is removed from
�

X), and the
elements hi, j ( j �= i) denote the contribution of each x j to
reconstruct xi ; e is an N-dimensional vector of all 1s. Then
the optimal solution, denoted as h̃i , is used to construct
the following objective function which aims to preserve the
optimal weight vector h̃i

N∑

i=1

∥
∥
∥UT xi − UT �

Xh̃i

∥
∥
∥

2 = tr(UT �

X(I − H̃)(I− H̃)T �

X
T

U)

(22)

where H̃ = [H̃1, h̃2, . . . , H̃N ]. The optimal projections of SPP
are the eigenvectors corresponding to the smaller eigenvalues
of the following generalized eigenvalue problem:

�

X(I− H̃)(I − H̃)
T �

X
T

U = �

X
�

X
T

U�. (23)

C. Efficient Method for Computing the Sparse Coefficients

Since SPP only focuses on the vector-based sparse represen-
tation problem using the L1-norm, in this section, the sparse
representation for tensor data combining the L1-and L2-norm
penalty is introduced. First, in order to obtain the optimal
sparse representation coefficients, the tensor representation of
the following L1- and L2-norm penalty optimization problem
should be solved

H∗=arg min
H

⎛

⎜
⎝

∥
∥
∥
∥
∥
∥

Xi−
∑

j, j �=i

Hi j X j

∥
∥
∥
∥
∥
∥

2

+α
∥
∥Hi,:

∥
∥2+β

∣
∣Hi,:

∣
∣

⎞

⎟
⎠(∀i)

(24)
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where the N × N matrix H is the representation coefficient
matrix satisfying diag(H) = 0 (this is similar to the H̃ in
SPP), and Hi,: denotes the i th row vector, |·| denotes the L1-
norm of vector Hi,:, the coefficient α ≥ 0 is a parameter to
control the amounts of shrinkage, and β is the L1-norm term
coefficient. Because of the nature of the L1-norm penalty,
some coefficients are shrunk exactly to zeros if β is large
enough. The difference for learning the reconstruction matrix
between the STA and SPP is that STA uses the L1- and
L2-norm penalty which can result in sparsity and improving
the grouping effectiveness in regression [50] in unsupervised
manner. However, it is impossible to directly solve the above
optimization problem with tensor representation. Fortunately,
it is easy to obtain the following proposition from Definition 1.

Proposition 1: The optimization problem of (24) is equiva-
lent to the following optimization problem:

H∗=arg min
H

⎛

⎜
⎝

∥
∥
∥
∥
∥
∥

xi−
∑

j, j �=i

Hi j x j

∥
∥
∥
∥
∥
∥

2

2

+α ∥∥Hi,:
∥
∥2+β

∣
∣Hi,:

∣
∣

⎞

⎟
⎠(∀i)

(25)

where xi denotes the high-dimensional vector concatenated by
the columns of matrix X(k)

i (or tensor Xi ) for any mode k.
Therefore, one can solve the N optimization problem (25)

to obtain sparse matrix H by using the elastic net algorithm
[50]. However, since xi is a very high-dimensional vector,
directly solving (25) is also time consuming. Fortunately, the
following theorem can guarantee the equivalence of the sparse
representation coefficients, which can be computed efficiently.

Theorem 1: Suppose xi s are the independent random vec-
tors, for any unitary matrix � = [A Ac] where span(A) =
span(x1, . . . , xN ) and Ac is the complement of A, the follow-
ing optimization problem (26) has the same solution as (25)

H∗=arg min
H

⎛

⎜
⎝

∥
∥
∥
∥
∥
∥

AT xi−
∑

j, j �=i

Hi j AT x j

∥
∥
∥
∥
∥
∥

2

2

+α ∥∥Hi,:
∥
∥2+β ∣∣Hi,:

∣
∣

⎞

⎟
⎠.

(26)

Proof: Since span(A) = span(x1, . . . , xN ) and Ac is the
orthogonal complement of A, then �T � = ��T = I and
AcT xi = 0. We have
∥
∥
∥
∥
∥
∥

AT xi −
∑

j, j �=i

Hi j AT x j

∥
∥
∥
∥
∥
∥

2

2

+ α
∥
∥Hi,:

∥
∥2 + β

∣
∣Hi,:

∣
∣

=
∥
∥
∥
∥
∥
∥
[A Ac]T xi−

∑

j, j �=i

Hi j [A Ac]T x j

∥
∥
∥
∥
∥
∥

2

2

+α
∥
∥Hi,:

∥
∥2+β

∣
∣Hi,:

∣
∣

=
∥
∥
∥
∥
∥
∥
�T xi −

∑

j, j �=i

Hi j �
T x j

∥
∥
∥
∥
∥
∥

2

2

+ α
∥
∥Hi,:

∥
∥2 + β

∣
∣Hi,:

∣
∣

= tr

⎡

⎢
⎣�

T

⎛

⎝xi −
∑

j, j �=i

Hi j x j

⎞

⎠

⎛

⎝xi −
∑

j, j �=i

Hi j x j

⎞

⎠

T

�

⎤

⎥
⎦

+α
∥
∥Hi,:

∥
∥2 + β

∣
∣Hi,:

∣
∣

= tr

⎡

⎢
⎣

⎛

⎝xi −
∑

j, j �=i

Hi j x j

⎞

⎠

⎛

⎝xi −
∑

j, j �=i

Hi j x j

⎞

⎠

T

��T

⎤

⎥
⎦

+α
∥
∥Hi,:

∥
∥2 + β

∣
∣Hi,:

∣
∣

= tr

⎡

⎢
⎣

⎛

⎝xi −
∑

j, j �=i

Hi j x j

⎞

⎠

⎛

⎝xi −
∑

j, j �=i

Hi j x j

⎞

⎠

T

I

⎤

⎥
⎦

+α
∥
∥Hi,:

∥
∥2 + β

∣
∣Hi,:

∣
∣

= tr

⎡

⎢
⎣

⎛

⎝xi −
∑

j, j �=i

Hi j x j

⎞

⎠

⎛

⎝xi −
∑

j, j �=i

Hi j x j

⎞

⎠

T
⎤

⎥
⎦

+α
∥
∥Hi,:

∥
∥2 + β

∣
∣Hi,:

∣
∣

=
∥
∥
∥
∥
∥
∥

xi −
∑

j, j �=i

Hi j x j

∥
∥
∥
∥
∥
∥

2

2

+ α
∥
∥Hi,:

∥
∥2 + β

∣
∣Hi,:

∣
∣.

Therefore, the optimal sparse reconstruction coefficients are
invariant when xi s are projected to the low-dimensional sub-
space A.

The theorem indicates that the sparse representation coef-
ficients can be efficiently computed in a low-dimensional
subspace spanned by the xi s instead of being in the orig-
inal high-dimensional space. Therefore, the computational
complexity can be greatly reduced in solving the sets of
optimization problem (26).

D. Sparse Tensor Alignment Algorithm

Once the optimal sparse coefficient matrix H is obtained,
it can be incorporated into the tensor alignment framework,
in which the sparse representation coefficients are preserved.
Thus a novel unsupervised tensor dimensionality reduction
method called STA is obtained.

The objective function of STA is defined as

min
N∑

i=1

∥
∥
∥
∥
∥
∥

Y(k)
i −

N∑

j �=i, j=1

Hi, j Y(k)
j

∥
∥
∥
∥
∥
∥

2

= min
N∑

i=1

∥
∥
∥
∥
∥
∥

N∑

j=1

(
1

N
Y(k)

i −Hi, j Y(k)
j )

∥
∥
∥
∥
∥
∥

2

= min
N∑

i=1

∥
∥
∥
∥
∥
∥

N∑

j=1

(
1

N
ei −Hi, j )Y

(k)
j

∥
∥
∥
∥
∥
∥

2

= min
N∑

i=1

tr

(

Ŷk
(

(
1

N
ei −Hi,:)(

1

N
ei −Hi,:)T ⊗ Ik

)

Ŷ(k)T
)

= min
N∑

i=1

tr(Ŷ(k)(LSTA
i ⊗ Ik)Ŷ(k)T )

= min tr
(

Ŷ(k)
(
(I−H)(I −H)T ⊗ Ik

)
Ŷ(k)T

)

= min tr(UT
k X(k)(LSTA ⊗ Ik)X(k)T Uk)
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TABLE II

STA ALGORITHM PROCEDURES

where Ŷ(k) = [Y(k)
1 , Y(k)

2 , . . . , Y(k)
N ], LSTA

i = (1/Nei − Hi,:)
(1/Nei − Hi,:)T and LSTA = (I − H)(I − H)T , and the N-
dimensional vector ei = [0, 0, . . . , 0, 1, 0, ...0], i.e., only i th
element is 1.

By using the model (ii), the whole optimization model of
STA is obtained as follows:

{
min tr(UT

k X(k)(LSTA ⊗ Ik)X(k)T Uk)

s.t. UT
k X(k)X(k)T Uk = Idk .

(27)

For each mode k, the optimal projection matrix of STA can
be obtained by solving the following eigen equation:

X(k)(LSTA ⊗ Ik)X(k)T Uk = X(k)X(k)T Uk�. (28)

Similar to other tensor learning methods, the optimal pro-
jection matrices of STA have no closed-form solutions. How-
ever, the suboptimal solutions can be obtained by iteratively
optimizing different projection matrices while fixing the other
projection matrices. The details of the STA algorithm are
shown in Table II.

E. Computational Complexity Analysis

For simplicity, we assume that m1 = m2 = · · · = mn = m
and the total number of training samples N is compara-
ble in magnitude to the feature dimension mn . Usually, the
computational complexity of multilinear extension methods is
less than that of vector-based methods on higher tensor data.
For example, the complexity of PCA is O(m3n). The total
complexity of MPCA is O(t ((n+ 1)Nnmn+1 + nm3)), where
t denotes the number of iterations in the outside loop.

In STA, solving the elastic net to get the coefficient matrix
needs O(mn N2 J ), where J denotes the number of nonzero
elements and usually is a very small number. Thus it can
be rewritten as O(mn N2). Computing the scatter matrices in
(27) needs O(nNmn+1) (upper bounded). Solving (27) needs
O(m3) and the tensor projection needs O(Nmn+1). Therefore,
the total complexity of STA is O(mn N2 + t (nNmn+1 +
Nmn+1 + m3)).

From the above analysis and the literature [3]–[5], [9], [11],
[14], [30]–[33], and [38]–[43], we can conclude that when
the data is a second- or high-order tensor, the tensor-based
learning methods can improve computational efficiency and
avoid small sample size problem, thereby obtaining better
performances than the vector-based learning methods in this
case. However, since the tensor-based learning models are
the nonconvex optimization problems, they cannot obtain the
global optimal solution.

IV. EXPERIMENT

In this section, a set of experiments are presented to evaluate
the proposed STA, the baseline method (nearest classifier
on the original data), and other unsupervised algorithms,
i.e., MPCA, TLPP, TNPE and ONPP, for recognition tasks,
including second-order tensor (image matrix) in face/objective
recognition and high-order tensor (3-D matrix data) in action
recognition. The Yale face database was used to explore the
robustness of STA with the variations in expressions, illumina-
tion, block subtraction, and noise. The COIL-20 database was
used to test the robustness of STA for pose variations in noise
and block subtraction. The FERET face database was used to
test the robustness of STA with variations in face expression
and lighting conditions. The Weizmann database was used
to test the performance of STA in high-order learning. The
nearest neighbor classifier with Euclidean distance was used in
all the experiments. Section IV-F summarizes the experimental
results.

A. Robustness Test on Yale Face Database

The Yale face database [52] (http://www.cvc.yale.edu/
projects/yalefaces/yalefaces.html) contains 165 images of
15 individuals (each person providing 11 different images)
with various facial expressions and lighting conditions. In our
experiments, each image was manually cropped and resized
to 50 × 40 pixels. In order to test the robustness of the algo-
rithms, some areas of images were first replaced by a randomly
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Fig. 1. Processed sample images of one person from the Yale face database.

TABLE III

AVERAGE RECOGNITION RATES (PERCENT), STANDARD ERROR,

AND THE BEST PARAMETER VALUE OF FIVE METHODS

ON THE YALE FACE DATABASE

located square block of size 5 × 5 or 10 × 10. Then Gaussian
noise was added to the two groups of occluded images by
using the MATLAB code “a = awgn (a, 1, 35),” where
“a” denotes the image matrix. Fig. 1 shows the occluded
sample images (block size 10 × 10) of one person used in
the experiments.

In the experiments, six images of each individual were
randomly selected and used as training set, and half of the
remaining images as test and validation set, respectively. The
experiments were independently performed 10 times and the
average recognition results of the test set were calculated. For
each run, the validation set was used for parameter selection
(i.e., the local neighbor size K and the optimal subspace
dimensions) in MPCA, TLPP, TNPE, and ONPP. When using
the elastic net, the optimal parameter α is selected from
{0.001,0.01,…,10 000}. The parameter β can be automatically
determined since the elastic net algorithm could provide the
optimal solution path of β [50]. The average recognition rates
of each method and the corresponding best parameter values
(in average) are shown in Table III. The recognition rate versus
the number of the dimensions is shown in Fig. 2(a), and the
variation of the recognition rate versus the parameter α of a
single run is shown in Fig. 2(b), which indicates that the STA
is robust to this parameter when it is large enough. Fig. 2(b)
also shows that, when α = 0 (i.e., without the L2 norm
penalty), the STA usually is less effective than when using
a suitable L2-norm penalty coefficient. Thus, the grouping
effectiveness in regression can enhance the performance of the
algorithm.

Fig. 2. (a) Average recognition rates (%) versus the number of dimensions
on the Yale face database. (b) Recognition rates (%) versus the variation of
α and the number of dimension on STA algorithm.

Fig. 3. Processed sample images from the COIL-20 image database.

As can be seen form Table III and Fig. 2, STA obtains
the best recognition rates in the two groups of experiments,
which shows the robustness for block subtraction and noise
when there are variations in expressions and illumination.

B. Robust Objective Recognition on COIL-20 Image Database

The COIL-20 database [53] (http://www.cs.columbia.edu/
CAVE/software/softlib/coil-20.php) consists of 20 × 72 =
1440 images of 20 objects where the images of each object
were taken at pose intervals of 5° (i.e., 72 poses per object).
The original images were normalized to 128 × 128 pixels.
Each image was converted to a gray-scale image of
32× 32 pixels for computational efficiency in the experiments.
The images were also preprocessed as in Section IV-A by
using the 5 × 5 square block for occlusion. Some sample
images of four objects are shown in Fig. 3.



1788 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 10, OCTOBER 2014

TABLE IV

AVERAGE RECOGNITION RATES (PERCENT), STANDARD

ERROR, AND THE BEST PARAMETER VALUE OF FIVE

METHODS ON THE COIL-20 DATABASE

Fig. 4. Average recognition rates (%) versus the number of dimensions on
the COIL 20 database.

Fig. 5. Sample images of one person on FERET face database.

In this database, the experiments were performed in the
same way as in Section IV-A. The recognition rates of each
method are shown in Table IV. The recognition rates versus the
variations of the dimension are shown in Fig. 4. In Table IV
and Fig. 4, STA obtains the best recognition rate, which shows
the robustness for block subtraction and noise when there are
variations in rotations of the objectives.

C. Experiments on FERET Face Database

The FERET face database is a result of the FERET program,
which was sponsored by the U.S. Department of Defense
[54]. It has become a standard database for testing and
evaluating state-of-the-art face recognition algorithms. The
proposed method was tested on a subset of the FERET
database. This subset includes 1400 images of 200 individuals
(each individual has seven images) and involves variations in
facial expression, illumination, and pose. In the experiment,
the facial portion of each original image was automatically
cropped based on the location of the eyes, and the cropped
images were resized to 40 × 40 pixels. The sample images of
one person are shown in Fig. 5.

In the experiments, four images of each individual were
randomly selected and used for training, and the remaining
images were used for testing. The experiments were performed

TABLE V

AVERAGE RECOGNITION RATES (PERCENT), STANDARD

ERROR, AND THE BEST PARAMETER VALUE OF FIVE

METHODS ON THE FERET DATABASE

Fig. 6. Average recognition rates (%) versus the number of dimensions on
the FERET database.

Fig. 7. Key silhouettes of 10 actions from the Weizmann database. (a) Bend.
(b) Jack. (c) Jump. (d) Pjump. (e) Run. (f) Side. (g) Skip. (h) Walk. (i) Wave1.
(j) Wave2.

as the same way in Section IV-A. Table V lists the recognition
rates of each method and Fig. 6 shows the variations of the
recognition rates versus the dimensions. Again, STA performs
better than the other methods.

D. Experiments on Weizmann Action Database

The experiment was performed on the Weizmann data-
base [55], which is a commonly used database for human
action recognition. The 90 videos coming from 10 categories
of actions included bending (bend), jacking (jack), jumping
(jump), jumping in places (pjump), running (run), galloping
sideways (side), skipping (skip), walking (walk), single-hand
waving (wave1), and both-hands waving (wave2), which were
performed by nine subjects. The centered key silhouettes of
each action are shown in Fig. 7.

In order to represent the spatiotemporal feature of the
samples, 10 successive frames of each action were used to
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Fig. 8. Example of the bending action in the spatiotemporal domain from
Weizmann database.

TABLE VI

AVERAGE RECOGNITION RATES (PERCENT), STANDARD

ERROR, AND THE BEST PARAMETER VALUE OF FIVE

METHODS ON THE WEIZMANN ACTION DATABASE

extract the temporal feature. Fig. 8 shows a tensor sample
of the bending action. Each centered frame was normalized
to the size of 32 × 24 pixels. Thus the tensor sample was
represented in the size of 32 × 24 × 10 pixels. It should be
noted that there are no overlapped frames in any two tensors
and the starting frames of the tensors are not normalized to the
beginning frames of each action. Thus, the recognition tasks
are difficult. Therefore, if one wants to get high recognition
accuracy, the methods used for feature extraction should be
robust to the starting frames and the actions’ variations.

In the experiments, six action tensors of each category were
randomly selected and used for training and the remaining
tensors were used for testing. The experimental procedures
were the same as in Section IV-A. The recognition rates of
each method are listed in Table VI. The average recognition
rates (%) versus the number of dimensions are shown in
Fig. 9(a). The variations of the average recognition rate versus
the number of training sample of different methods are shown
in Fig. 9(b). It can be found that STA also outperforms the
other algorithms in action tensor feature extraction. Since
many experimental details are quite different from each other
in different articles, all the results obtained by different
algorithms in this paper are based on the same database
and the same experimental background, and thus it is fair
to compare them. When the number of training samples
is slightly increased, the recognition rates of STA and the
compared methods are above 90%. However, the superiority
of the proposed STA over previous tensor-based subspace
learning methods is still maintained. As indicated in [56],
a possible improvement direction on the action recognition

is to extend previous works on spatiotemporal alignments by
incorporating manifold learning.

E. Experiments on Cambridge Hand Gesture Database

The Cambridge hand gesture database [57] consists of
900 image sequences of nine gesture classes, which are defined
by three primitive hand shapes and three primitive motions.
The objective of using this dataset is to classify different
shapes as well as different motions at a time. Each class
contains 100 image sequences (5 different illuminations × 10
arbitrary motions × 2 subjects). Each sequence was recorded
in front of a fixed camera having roughly isolated gestures
in space and time. Thus, fairly large intraclass variations in
spatial and temporal alignment are reflected in the dataset.
Some sample images of the nine different gesture classes
are shown in Fig. 10. The experimental procedures are the
same as in the Weizmann action database. The recognition
rates of each method are listed in Table VII and the average
recognition rates (%) versus the number of dimensions are
shown in Fig. 9(c). It can be found that STA also outperforms
the other algorithms in hand gesture tensor feature extraction.

F. Discussion

Based on the experimental results shown in the above
sections, the following observations can be made.

1) Although the label information was not used in all
methods, STA obtained the best recognition rates. STA per-
formed better than the TNPE and OTNPE, which indicates
that combining the L1- and L2-norms for sparse alignment
provides more discriminative information than local linear
reconstruction.

2) STA was more robust than the other compared methods.
OTNPE outperformed MPCA, TLPP, and TNPE in higher
dimensional subspace, but it usually obtained low accuracies
in the lower dimensional subspace. That is, with increasing
number of dimensions, OTNPE is more effective than MPCA,
TLPP, and TNPE in different cases.

3) STA performed better than TLPP and TNPE, which
indicates that sparsity is more important than locality. In
addition, TLPP and TNPE had almost the same perfor-
mance in action recognition, which indicates that only using
the L2-norm as a metric to measure the local geometric
structure cannot always improve performance.

4) In the experiments presented in Sections IV-A and IV-B,
it was found that the local neighborhood graphs could not
explore the latent discriminant information for discrimination
when noise was added to the data, which gave rise to the lower
recognition rates of TLPP, TNPE, and OTNPE. However, STA
did not introduce the local neighborhood parameter K and thus
there was essential difference. In STA, the L1- and L2-norms
are combined together for grouping the reconstruction coeffi-
cients with sparse properties; thus the advantages of robustness
to data noise and the potential discriminative ability proven in
[46]–[48] are encoded in the representation coefficients, which
are preserved in the low-dimensional subspace. These are the
essential reasons for STA to achieve good performance.
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Fig. 9. (a) Variations of the average recognition rates (%) versus the number of dimensions on the Weizmann action database. (b) Average recognition rate
versus the number of training sample of different methods on the Weizmann action database. (c) Variations of the average recognition rates (%) versus the
number of dimensions on Cambridge hand gesture database.

Fig. 10. Some sample images on Cambridge hand gesture database.

TABLE VII

AVERAGE RECOGNITION RATES (PERCENT), STANDARD ERROR,

AND THE BEST PARAMETER VALUE OF FIVE METHODS

ON THE CAMBRIDGE HAND GESTURE DATABASE

5) From the experiments, we also found the limitation
of the STA algorithm. The properties of STA were very
similar to those of the compared algorithms. However, since
the coefficient matrix was obtained from elastic net which
selected the group of the most correlated samples, if the group
of coefficients corresponding to the correlated samples was
distributed in different classes (i.e., elastic net cannot explore
more discriminant information than the local geometric struc-
ture in TLPP, TNPE), STA might not obtain higher recognition
rate than TLPP or TNPE. However, this special case seldom
happened.

V. CONCLUSION

In this paper, we chose a set of tensor learning algorithms
and unified them by using the alignment technique. As a result,
a general tensor learning framework was obtained. By using
this framework as a platform, STA was proposed to explore
the latent discriminative information by using the L1- and

L2-norm penalty. STA preserved the sparse tensor representa-
tion coefficients, which encoded the discriminative information
and robustness in the low-dimensional subspace. Experimental
results on five well-known databases showed the excellent
performance of STA against the state-of-the-art tensor learning
methods in face recognition, objective recognition, and action
recognition. It was shown that STA is robust to noise, block
subtraction, rotation of the object, and starting frames of
different actions. For future research, we plan to enforce the
sparsity on the projection matrix/vector and investigate the
sparse projection learning methods for tensor recognition.
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